COMPOSITION-DIFFERENTIATION OPERATOR ON THE BERGMAN SPACE

dc.contributor.authorK. O. ALOO1
dc.contributor.authorJ. O. BONYO2
dc.contributor.authorI. OKELLO1
dc.date.accessioned2025-11-27T13:40:29Z
dc.date.issued2023
dc.description.abstractWe investigate the properties of composition-differentiation operator Dψ on the Bergman space of the unit disk L2 a(D). Specifically, we characterize the properties of the reproducing kernel for the derivatives of the Bergman space functions. Moreover, we determine the adjoint properties of Dψ whenever ψ is self analytic map of the unit disk D.
dc.identifier.citationdoi.org/10.28919/cpr-pajm/2-18
dc.identifier.issn2832-4293
dc.identifier.urihttps://repository.tmu.ac.ke/handle/123456789/246
dc.language.isoen
dc.publisherPan-American Journal of Mathematics
dc.relation.ispartofseriesPan-American Journal of Mathematics 2 (2023), 18
dc.subjectBergman space
dc.subjectComposition-differentiation operator
dc.subjectReproducing kernel
dc.subjectAdjoint. ∗Corresponding author.
dc.titleCOMPOSITION-DIFFERENTIATION OPERATOR ON THE BERGMAN SPACE
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
138-306-1-PB ... 14.pdf
Size:
246.48 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: