COMPOSITION-DIFFERENTIATION OPERATOR ON THE BERGMAN SPACE
| dc.contributor.author | K. O. ALOO1 | |
| dc.contributor.author | J. O. BONYO2 | |
| dc.contributor.author | I. OKELLO1 | |
| dc.date.accessioned | 2025-11-27T13:40:29Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | We investigate the properties of composition-differentiation operator Dψ on the Bergman space of the unit disk L2 a(D). Specifically, we characterize the properties of the reproducing kernel for the derivatives of the Bergman space functions. Moreover, we determine the adjoint properties of Dψ whenever ψ is self analytic map of the unit disk D. | |
| dc.identifier.citation | doi.org/10.28919/cpr-pajm/2-18 | |
| dc.identifier.issn | 2832-4293 | |
| dc.identifier.uri | https://repository.tmu.ac.ke/handle/123456789/246 | |
| dc.language.iso | en | |
| dc.publisher | Pan-American Journal of Mathematics | |
| dc.relation.ispartofseries | Pan-American Journal of Mathematics 2 (2023), 18 | |
| dc.subject | Bergman space | |
| dc.subject | Composition-differentiation operator | |
| dc.subject | Reproducing kernel | |
| dc.subject | Adjoint. ∗Corresponding author. | |
| dc.title | COMPOSITION-DIFFERENTIATION OPERATOR ON THE BERGMAN SPACE | |
| dc.type | Article |